# Why is Zoom so much more popular than standards-based videoconferencing?

Henning Schulzrinne - Columbia University

## Only very few systems matter



#### Not news: Lots of people spend lots of time on video



300M participants per day

#### No surprise, either: Video conferencing ≅ Zoom

Most Popular Video Conferencing Apps



## AT&T videophone 1995 (\$1,499 or \$30/day)



#### Video relay service: VP-100 (2000)



Now: SIP-based Probably largest interoperable, public video network (IETF RUM working group working on profile)

#### The landscape of IP video communications





- Differentiated roles (organizer, panelist, audience)
- Some audience participation
- Up to 50,000 participants

Multi-party streaming (Mbone, YouTube, FB Live, Livestream)

 One way, except chat & comments

CuSeeMe (1992)

# Lessons learned since 1964

- Two-party video is rarely useful except for specialty applications (telemedicine & adult entertainment)
  - But popular for environment sharing ("let me show you my new apartment")
- Most video "calls" are scheduled  $\rightarrow$  call signaling by calendar and SMTP, not SIP
- Chat and screen sharing are the most useful Zoom features
- The most useful video conferencing accessory is a better *microphone* (and maybe a ring light)



#### Video calls as basic augmented reality

## Mundane Video Directors in Interaction: Showing One's Environment in Skype and Mobile Video Calls

#### By CHRISTIAN LICOPPE, JULIEN MOREL

Studies of Video Practices

2014

**1st Edition** 

Book

Edition

First Published



Figures 14–16 The images produced by the call recipient during the caller's noticing turn (lines 22–23) as she pans the camera to the right from the window to the wall.

#### From Get To Know

How to make the most of NYC apartment tours via FaceTime and Zoom

By Michelle Sinclair Colman Tuesday, June 16, 2020

Such a mobility turn in video communication enables participants to show something to their interlocutor. Thirty percent of mobile video conversations seem to unfold around the intent of one of the participants to show something to the other, which is probably an underestimate because showing also occurs in video calls that do not have that as an initial goal. From what we observed in the Skype part of our own corpus, the numbers should be much in the same range also for Skype interactions. With the possibility of video communication technologies being able to show something during a call, these at last seem to fulfill their early and heretofore unkept promise that they would allow remote conversationalists to share their environments. A related line of research has looked at "video-as-data," that is, how some part of the ongoing activity could be recorded and made available in real time to provide a shared field of interaction in collaborative situations. In such a configuration, the participants work to articulate video and speech occurrences in a way that is relevant to the unfolding interaction.

## What we think Zoom is...



## The hard part for interoperable video interaction



#### Video (and audio) are a small part of the system!



# Standards = technology translator

#### •Similar in some ways to textbooks

#### "accepted technology"

lower/known risks ("vetted")
infrastructure ("eco system")
libraries, test tools, text books, certification, ...
reduce cost of picking among roughly equal choices
sometimes reduce IPR risks ("patent pool", RAND)

#### •requires expertise and broader training

many CS standards don't have either

example: HTTP/1.0, HTML 1.0, 802.11 WEP

# 394 SIP (and related) RFCs (incomplete)

#### SIP Standards

#### Core SIP Documents

| RFC      | Document Title                                                    |
|----------|-------------------------------------------------------------------|
| RFC 2543 | SIP: Session Initiation Protocol (obsolete)                       |
| RFC 3261 | SIP: Session Initiation Protocol                                  |
| RFC 3262 | Reliability of Provisional Responses                              |
| RFC 3263 | Locating SIP Servers                                              |
| RFC 3265 | SIP-Specific Event Notification                                   |
| RFC 5954 | Essential Correction for IPv6 ABNF and URI Comparison in RFC 3261 |

#### SDP-Related Documents

| RFC      | Document Title                                                                    |
|----------|-----------------------------------------------------------------------------------|
| RFC 2327 | Session Description Protocol (SDP) (obsolete: see RFC 4566)                       |
| RFC 3264 | An Offer/Answer Model with the Session Description Protocol (SDP)                 |
| RFC 3266 | Support of IPv6 in SDP                                                            |
| RFC 3388 | Grouping Media Lines in SDP (obsolete: see  RFC 5888 )                            |
| RFC 3407 | Session Description Protocol (SDP) Simple Capability Declaration                  |
| RFC 3524 | Mapping of Media Streams to Resource Reservation Flows                            |
| RFC 3556 | SDP Bandwidth Modifiers for RTCP Bandwidth                                        |
| RFC 3605 | Real Time Control Protocol (RTCP) attribute in Session Description Protocol (SDP) |
| RFC 3890 | A Transport Independent Bandwidth Modifier                                        |
| RFC 4091 | An Alternative NAT Semantics for SDP                                              |
| RFC 4145 | TCP-Based Media Transport in the SDP                                              |
| RFC 4566 | Session Description Protocol (SDP)                                                |
| RFC 4567 | Key Management Extensions for SDP and RTSP                                        |
| RFC 4568 | SDP Security Descriptions for Media Streams                                       |
| RFC 4570 | SDP Source Filters                                                                |
| RFC 4572 | Connection-Oriented Media Transport over TLS in SDP                               |
| RFC 4574 | SDP Label Attribute                                                               |
|          |                                                                                   |

## roughly 300 with SIP in title (RFC editor)

## IMS 23.228: 329 pg. RCS 5.1: 482 pg.

## Simple core protocols have acquired technical debts

| RFC  | Туре          | Status   | Title                                  | Bgnd | Prot | Names | Ops | RR | Proxy | Stub | Auth | Res | V   |          | SEC    |  |
|------|---------------|----------|----------------------------------------|------|------|-------|-----|----|-------|------|------|-----|-----|----------|--------|--|
| 882  |               | Obsolete | Domain Names – Concepts and Facilities | х    |      | х     | х   |    |       |      | x    |     |     |          |        |  |
| 883  |               | Obsolete | Domain Names – Implementation and      |      | х    |       | х   | х  |       |      | 7    |     |     |          |        |  |
| c?   |               |          | Specification                          |      |      |       |     |    |       |      |      |     |     | DNS:     |        |  |
| 920  |               |          | Domain Requirements                    |      |      |       | х   |    |       |      |      |     | ~14 | 3 active | e RFCs |  |
| 2    |               |          |                                        |      |      |       |     |    |       |      |      |     |     |          |        |  |
| 973  | 6             | Obsolete | Domain System Changes and              |      |      | х     |     | х  |       |      | X    |     |     |          |        |  |
| đ    |               |          | Observations                           |      |      |       |     |    |       |      |      |     |     |          |        |  |
| 1032 |               |          | Domain Administrators Guide            |      |      |       | х   |    |       |      |      |     |     |          |        |  |
| c?   |               |          |                                        |      |      |       |     |    |       |      |      |     |     |          |        |  |
| 1033 |               |          | Domain Administrators Operations       |      |      |       | х   |    |       |      |      |     |     |          |        |  |
| đ    |               |          | Guide                                  |      |      |       |     |    |       |      |      |     |     |          |        |  |
| 1034 | Standard      |          | Domain Names – Concepts and Facilities | х    |      | х     | х   |    |       | х    | х    | х   |     |          |        |  |
| P    |               |          |                                        |      |      |       |     |    |       |      |      |     |     |          |        |  |
| 1035 | Standard      |          | Domain Names – Implementation and      |      | х    | х     |     | х  |       |      | х    | х   | х   |          |        |  |
| ď    |               |          | Specification                          |      |      |       |     |    |       |      |      |     |     |          |        |  |
| 1101 |               |          | DNS Encoding of Network Names and      |      |      | х     |     |    |       |      |      |     |     |          |        |  |
| ď    |               |          | Other Types                            |      |      |       |     |    |       |      |      |     |     |          |        |  |
| 1123 | Standard      |          | Requirements for Internet Hosts -      | х    |      |       |     |    |       |      | х    | х   |     |          |        |  |
| P    |               |          | Application and Support                |      |      |       |     |    |       |      |      |     |     |          |        |  |
| 1178 | Informational |          | Choosing a Name for Your Computer      |      |      |       | х   |    |       |      |      |     |     |          |        |  |
| Z    |               |          |                                        |      |      |       |     |    |       |      |      |     |     |          |        |  |

# Sidebars: XCON and CCMP

IETF attempt in 2008-2012 to standardize basic conference management

Data model for conference (XML)

e.g., user admission, sidebars (breakout rooms), floors

API (operations) on data model  $\rightarrow$  CCMP

Left out polling, advanced breakout functions, waiting rooms, ...

# Addressing - vision & reality

Original idea: SIP URLs (sip:user@domain) or tel URLs (tel:+1-201-555-0123)

still exists and useful for hardware

Current reality: web URLs via web page, email, calendar, Slack, IM, SMS, ...

# Beyond protocols - what do users expect?

#### Video conferences:

- NAT traversal
- Cross-domain authentication and authorization
- Calendar interface
- Media routing
- Scalable capacity (tens to thousands per session)
- End-to-end security
- Media gateways (phone, room systems)
- Polling
- Recording and playback
- Transcription (accessibility, records)
- Language translation
- Managing abuse ("Zoom bombing", criminal activity, extremism)

## Webinars:

- Attendee management
- Connect to YouTube, Facebook Live, ...
- Monetization
- Polling and "engagement"

#### **Operational models**



PBX heritage "Unified communications" Hosted in corporate data center





Early Skype architecture Common elsewhere: SMTP, XMPP, IRC\*, Usenet but usually large user/server ratio





SIP-based: RCS (mostly messaging) struggled with higher-quality audio (HD audio)

Rooted in corporate heritage Struggling with consumer use (and abuse)

#### Not quite peer-to-peer: "permissioned" networks

IRC

| today | yesterday | network         | users Ø | users Ø channels Ø servers Ø |    |  |
|-------|-----------|-----------------|---------|------------------------------|----|--|
| 1.    | 1.        | Libera.Chat     | 36564   | 18711                        | 27 |  |
| 2.    | 2.        | IRCnet          | 20115   | 10685                        | 23 |  |
| 3.    | 3.        | <u>Undernet</u> | 14574   | 6065                         | 34 |  |
| 4.    | 4.        | <u>EFnet</u>    | 11765   | 6892                         | 17 |  |
| 5.    | 5.        | <u>OFTC</u>     | 11623   | 2327                         | 11 |  |
| 6.    | 6.        | Rizon           | 11511   | 8803                         | 16 |  |
| 7.    | 7.        | QuakeNet        | 9909    | 8780                         | 26 |  |
| 8.    | 8.        | DALnet          | 7839    | 3861                         | 38 |  |
| 9.    | 9.        | <u>Snoonet</u>  | 4262    | 5734                         | 17 |  |
| 10.   | 10.       | GIMPnet         | 3352    | 368                          | 6  |  |
| 11.   | 11.       | KampungChat     | 3197    | 459                          | 13 |  |
| 12.   | 12.       | hackint         | 3195    | 1753                         | 9  |  |
| 13.   | 13.       | GeekShed        | 3175    | 219                          | 4  |  |
| 14.   | 14.       | P2P-NET         | 2757    | 722                          | 13 |  |
| 15.   | 15.       | SimosNap        | 2631    | 522                          | 10 |  |
| 16.   | 16.       | <u>OltreIrc</u> | 2596    | 30                           | 14 |  |
| 17.   | 17.       | ExplosionIRC    | 2591    | 61                           | 9  |  |
| 18.   | 18.       | EsperNet        | 2430    | 2533                         | 11 |  |
| 19.   | 19.       | GameSurge       | 2122    | 1639                         | 12 |  |
| 20.   | 20.       | synIRC          | 2092    | 1103                         | 15 |  |
| 21.   | 21.       | Abjects         | 2074    | 341                          | 11 |  |
| 22.   | 22.       | SceneP2P        | 1771    | 68                           | 7  |  |
| 23.   | 23.       | IRCHighWay      | 1445    | 661                          | 17 |  |
| 24.   | 24.       | EuropNet        | 1353    | 983                          | 7  |  |
| 25.   | 25.       | <u>OpenJoke</u> | 1095    | 51                           | 27 |  |
| 26.   | 26.       | Geveze          | 1041    | 84                           | 5  |  |
| 27.   | 27.       | tilde.chat      | 1006    | 445                          | 12 |  |

#### Freenode IRC staff resign en masse, unhappy about new management

Network boss Andrew Lee disputes claims made by those leaving the internet chat community

| Thomas Claburn in San Franci | Wed 19 May 2021 // 21:50 UTC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |
|------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| 32                           | UPDATED       Most of the volunteer staff of Freenode, an internet relay chat         (IRC) network dating back to 1995, have resigned in protest over what they describe as a hostile takeover of the chat service.         And many have launched an alternative service, Libera Chat.         Freenode, which has focused on serving as a real-time communication channel for free and open source software projects, currently has about 76,000 users and 42,000 chat rooms.         In a resignation letter, a staffer called Christian, who is also known as Fuchs on Freenode, said after 10 years helping with the network, he is leaving because he disagrees with the direction being taken by Andrew Lee, founder of VPN firm Private Internet Access (PIA), who acquired a controlling interest [PDF] in Freenode's holding company in 2017. |  |
|                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |



## What are the strengths of the operational models?

| Feature                    | Enterprise<br>hosted                                         | Peer-to-peer                       | Carrier                                                                 | "VCaaS"                                           |
|----------------------------|--------------------------------------------------------------|------------------------------------|-------------------------------------------------------------------------|---------------------------------------------------|
| Predictable features       | Mostly                                                       | Difficult                          | Unlikely (Android!)                                                     | Mostly                                            |
| Cross-domain AA            | guests with<br>passwords                                     | sybils                             | "roaming"                                                               | added SSO, but still mostly secret strings        |
| Media routing              | rare                                                         | challenging                        | usually national only                                                   | As far as the cloud will stretch                  |
| Scalable capacity          | rare                                                         | freeloader problem                 | struggling with cloud                                                   | natural                                           |
| End-to-end security        | easy                                                         | easy for 2-party, no mixing        | wiretapping laws                                                        | challenging with media mixing                     |
| Media gateways             | PBX dial-in                                                  | nobody ever tried*                 | "we are the phone company!"                                             | outsourced                                        |
| Recording & playback       | with effort (rare)                                           | nobody ever tried                  | struggling with cloud                                                   | easy                                              |
| Transcription, translation | challenging                                                  | nobody ever tried                  | similar to VCaaS                                                        | in progress                                       |
| Manage abuse               | Challenging for<br>smaller entities<br>(schools, nonprofits) | lots of PhD theses<br>were written | have fraud & security<br>departments, but "common<br>carrier" tradition | incompatible with no-touch model; unexpected role |

# But it's really the business model that killed interoperability

Old models: Open source, enterprise software license or built into phone

Open source: who is going to run the server  $\rightarrow$  open source companies get bought by operations ("cloud") companies (e.g., Jitsi)

Enterprise: who wants to run and maintain a PBX server?

see: email outsourcing

Caller pays is back: Caller (= host) pays for meeting; participants are free

VoIP clients need inbound connections for call signaling and media

Video conference clients rely on participants to initiate sessions and participation - outbound only signaling — but still may need inbound media



somebody has Late 1990s: The only users with enough bandwidth didn't have NATs to provide the Early 2000s: NATs are evil and IPv6 will kill them STUN and TURN servers STUN TURN SIGNALING Internet ((( • )) ((( • )) ((( • ))) ((( • ))) 192.168.0.1 ••• NAT NAT ···· 192,168,1,1 209.133.29.01 128.105.39.11 192.168.0.1 ••• NAT NAT ••• 192 168 1 1 192.168.0.10 192.168.1.12 209.133.29.61 128.105.39.11  $\mathbf{x}$ 192.168.0.12 192.168.1.12 6 Private IP Space Public IP Space Private IP Space -----

https://anyconnect.com/stun-turn-ice/

## The versioning problem

| MUC presence versioning                         | Standards Track | Experimental | 2020-05-10 |
|-------------------------------------------------|-----------------|--------------|------------|
| Room Activity Indicators                        | Standards Track | Experimental | 2020-05-05 |
| Best practices for password hashing and storage | Informational   | Experimental | 2020-10-30 |
| Quick Response                                  | Standards Track | Experimental | 2020-05-05 |
| SASL Channel-Binding Type Capability            | Standards Track | Experimental | 2020-08-04 |
| Message Archive Management Preferences          | Standards Track | Experimental | 2020-08-25 |
| Pubsub Message Archive Management               | Standards Track | Experimental | 2020-08-25 |
| XMPP Compliance Suites 2021                     | Standards Track | Draft        | 2020-11-24 |
| Message Reactions                               | Standards Track | Experimental | 2020-10-13 |
| Pre-Authenticated In-Band Registration          | Standards Track | Experimental | 2020-11-24 |
| File metadata element                           | Standards Track | Experimental | 2020-11-24 |
| Stateless file sharing                          | Standards Track | Experimental | 2020-12-30 |
| Encryption for stateless file sharing           | Standards Track | Experimental | 2020-11-24 |
| Stickers                                        | Standards Track | Experimental | 2020-11-24 |
| Automatic Trust Management (ATM)                | Standards Track | Experimental | 2021-06-27 |
| Stanza Multiplexing                             | Standards Track | Experimental | 2021-01-19 |
| MUC Mention Notifications                       | Standards Track | Experimental | 2021-02-12 |
| DOAP usage in XMPP                              | Informational   | Experimental | 2021-01-26 |
| OMEMO Media sharing                             | Historical      | Experimental | 2021-01-26 |
| Service Outage Status                           | Standards Track | Experimental | 2021-02-09 |
| Content Rating Labels                           | Standards Track | Experimental | 2021-03-28 |
| Message Fancying                                | Humorous        | Active       | 2021-04-01 |
| Community Code of Conduct                       | Procedural      | Experimental | 2021-06-29 |
| XMPP Compliance Suites 2022                     | Standards Track | Experimental | 2021-06-22 |

?

| Project Name             | Platforms                                      |
|--------------------------|------------------------------------------------|
|                          | BSD / Linux / macOS                            |
| AstraChat                | Android / iOS / Linux / macOS / Windows        |
| BeagleIM by Tigase, Inc. | macOS                                          |
| blabber.im               | Android                                        |
| Bruno the Jabber™ Bear   | Android                                        |
| Conversations            | Android                                        |
| Converse                 | Browser                                        |
| Dino                     | Linux                                          |
|                          | Linux / Windows                                |
| Kaidan                   | Android / Linux / macOS / Other /<br>Windows   |
| Monal IM                 | iOS / macOS                                    |
| Movim                    | Android / Browser / Linux / macOS /<br>Windows |
| Poezio                   | Linux / macOS                                  |
| Profanity                | Linux / macOS / Windows                        |
| Psi                      | Linux / macOS / Windows                        |
| Psi+                     | Linux / macOS / Windows                        |
| Pàdé                     | Browser                                        |

#### WebRTC as transition model

# Standards-based client

WebRTC client

#### Application



multiple services, one client

no installation - one "page" per service switch browsers & maybe platforms no interoperability between services

No interoperability between services

#### WebRTC architecture



#### Typical WebRTC architecture

websocket (bidirectional TCP)



**STUN** 

Apache or nginx serve JS and HTML





proprietary session signaling (can be SIP or XMPP)

#### Good for non-square UIs

gather.town



advantages to break-out rooms?

# Or lower level still - browser as VM

WebAssembly SIMD: SIMD instructions, e.g., to replace video background

**WebTransport**: multiple cancellable streams: datagrams + bidirectional reliable streams

WebCodecs API: direct access to codecs

# **Bifurcation**

Communication out front applications: collaboration, social interaction, telemedicine

challenge: hybrid interactions  $\rightarrow$  AR with remote participants?

challenge: more structured meetings (e.g., recorded votes)

challenge: unwanted communications -- robocalls and QAnon

Video in back applications: monitoring (traffic, agriculture, security, ...)  $\rightarrow$  consumers are ML applications

# Conclusion

Video worked out quite differently than anticipated in the 1990s

probably the component everybody would ditch first for Zoom and kin

Standards-based communications survived where communication without prior arrangement is valued  $\rightarrow$  phone, email, SMS

We think codecs and protocols  $\rightarrow$  systems and operations

Moving from protocol standards to browser as hardware abstraction layer

happening with transport protocols, too (see QUIC)